CRYSTALLIZATION OF 3Ln203.5Ga203 GLASSES

Seishi YAJIMA, Kiyohito OKAMURA, and Toetsu SHISHIDO
The Oarai Branch, The Research Institute for Iron, Steel and Other Metals,
Tohoku University, Oarai, Ibaraki-ken, 311-13

The oxide glasses of $3 \text{Ln}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ were prepared, using Pr, Nd, Sm, Eu or Gd as a lanthanoid element. Crystallization of the glasses was studied by DTA and X-ray diffraction. A metastable phase was found on the way of the crystallization process of $3 \text{Pr}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ and $3 \text{Nd}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ glasses terminating in the transition into garnet. However, the phase transition transforming the amorphous phase directly into garnet not through a metastable phase was observed in case of $3 \text{Ln}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ glasses (Ln=Sm, Eu or Gd).

Some glasses based on lanthanoid oxides have been previously found in the $\operatorname{Ln-A1-0}^{1-2}$) and $\operatorname{La-Nb-0}^{3}$) systems (with $\operatorname{Ln=a}$ lanthanoid element). The present investigation has been carried out in order to obtain the glassy state of $3\operatorname{Ln}_2O_3\cdot 5\operatorname{Ga}_2O_3$, lanthanoid-gallium garnet composition, by the same method as that published in the previous paper and to examine the transformation from the amorphous to the crystalline phase by DTA and X-ray diffraction.

A batch was prepared with molar ratio $\operatorname{Ln_2O_3:Ga_2O_3=3:5}$, using the pure oxides (99.9%). Glasses were obtained by an impact quenching apparatus. A detailed description about the glass preparation and the experimental techniques has been given in this journal previously published. When Pr, Nd, Sm, Eu or Gd was used as a Ln, a completely glassy state was obtained from the melt with the composition corresponding to $3\operatorname{Ln_2O_3 \cdot 5Ga_2O_3}$. When La, Tb, Dy, Er, Tm, Yb or Lu was used, however, the resulted substance was put out of discussion because a considerable amount of crystalline phase was included in it. Devitrification of the glass was examined by DTA. Powdered sample (10 mg) in a platinum cell was heated or cooled at 10° C/min. in the range of a room temperature to 1200° C in argon atmosphere. The DTA curves in process of heating and cooling are shown in Fig. 1; in which exothermic peaks due to crystallization are observed. The curves obtained by cooling those glasses show there was no reaction.

For $3\text{Pr}_2\text{O}_3 \cdot 5\text{Ga}_2\text{O}_3$ glass, two distinct exothermic peaks are shown at 771°C and 900°C , respectively. The sample was heated for one hour at 800°C above the first peak (771°C) , and cooled down to a room temperature. X-ray diffraction pattern of the sample was taken with $\text{CuK}\alpha\text{-radiation}$ at a room temperature. The results are shown in Table 1. The existence of a new phase having a tetragonal cell is indicated; of which the lattice constants are $a=12.99\pm0.01\text{Å}$, $c=4.000\pm0.006\text{Å}$ and a/c=3.25. However, when heated for one hour at 1200°C , the X-ray diffraction pattern of the cooled sample showed the presence of the compound, $3\text{Pr}_2\text{O}_3 \cdot 5\text{Ga}_2\text{O}_3$ (garnet phase).

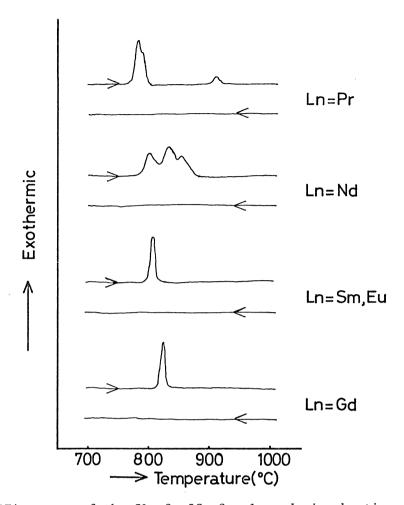


Fig.1. DTA curves of the $3 \text{Ln}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ glass during heating and cooling.

Table 1. Results of the X-ray diffraction analysis of the $\rm 3Pr_2O_3 \cdot 5Ga_2O_3$ glass after heating at 800°C for one hour.

h k 1	d _{cal} .(Å)	d _{obs} .(Å)	I _{obs} .
1 0 1	3.818	3.823	vw
4 1 0	3.151	3.150	w
3 0 1	2.938	2.940	vs
4 2 0	2.907	2.912	vs
4 3 0	2.598	2.589	W
4 0 1	2.521	2.522	w
0 0 2	2.000	1.993	vw
7 0 0	1.856	1.855	vw
4 6 0	1.801	1.803	vw
2 5 2	1.540	1.548	m

Hence it is considered that these two kinds of phases exist not only at a room temperature but also at 800°C and 1200°C, respectively, because no peak or dip in the DTA curve was observed on cooling. The first and the second exothermic peaks are attributed to crystallization of the new phase as a metastable state and to appearence of the garnet phase, respectively.

For $3\mathrm{Nd}_2\mathrm{O}_3 \cdot 5\mathrm{Ga}_2\mathrm{O}_3$ glass, somewhat overlapping three exothermic peaks were observed. The initial crystallization temperature was $789^{\circ}\mathrm{C}$. No diffraction peak was obtained for the sample cooled after heating up to $800^{\circ}\mathrm{C}$, that is, a temperature between the first ($789^{\circ}\mathrm{C}$) and the second peak ($825^{\circ}\mathrm{C}$). The diffraction pattern of the sample cooled after heating up to $835^{\circ}\mathrm{C}$ somewhat higher than that of the second peak showed the existence of a mixture of a new phase having a tetragonal cell and the stable phase of $3\mathrm{Nd}_2\mathrm{O}_3 \cdot 5\mathrm{Ga}_2\mathrm{O}_3$. The crystalline phase formed after heating for one hour at $1200^{\circ}\mathrm{C}$ and followed by cooling was identified to be a garnet alone. The former is considered to be the metastable phase the same as that in case of $3\mathrm{Pr}_2\mathrm{O}_3 \cdot 5\mathrm{Ga}_2\mathrm{O}_3$ glass. Though the cause of overlapping of three exothermic peaks has not been elucidated, these peaks may be attributed to crystallization leading to formation of the new metastable phase and $3\mathrm{Nd}_2\mathrm{O}_3 \cdot 5\mathrm{Ga}_2\mathrm{O}_3$ garnet.

For $3\mathrm{Sm_2O_3} \cdot 5\mathrm{Ga_2O_3}$, $3\mathrm{Eu_2O_3} \cdot 5\mathrm{Ga_2O_3}$ and $3\mathrm{Gd_2O_3} \cdot 5\mathrm{Ga_2O_3}$, their exothermic peaks are found at 801°C, 801°C and 810°C, respectively. These peaks are attributed to crystallization leading to formation of the garnet phase.

Table 2 gives the thermochemical properties regarding the crystallization of $3 \text{Ln}_2 \text{O}_3 \cdot 5 \text{Ga}_2 \text{O}_3$ glasses prepared by making use of Pr, Nd, Sm, Eu or Gd as a Ln.

	1 1	2 3 2 3 9
Glass	Initial Crystallization, T _C °C	Heat of Crystallization, ΔH _C Kcal/mol
Pr ₃ Ga ₅ O ₁₂	771	41.5 (2.04)
$Nd_3Ga_5O_{12}$	789	
$\mathrm{Sm_3Ga_5O_{12}}$	801	61.0 (3.05)
$\mathrm{Eu_3^{Ga}_{5}^{O}}_{12}$	801	68.0 (3.40)
$^{\mathrm{Gd}_{3}\mathrm{Ga}_{5}\mathrm{O}}_{12}$	810	60.5 (3.02)

Table~2 Thermochemical properties of the $3Ln_2O_3 \cdot 5Ga_2O_3$ glasses.

The values in parentheses inserted in the right-end column of the table are heat of crystallization calculated for $\text{Ln}_{3/20}\text{Ga}_{5/20}\text{O}_{12/20}$. Crystallization temperature increases to some extent with increasing atomic number of lanthanoid. The heat of crystallization, ΔHc , was determined from the exothermic peak area, which, according to Speil et al⁴) and Kerr, ⁵) is equal to $(\Delta \text{Hc} \cdot \text{M})/(\text{g} \cdot \lambda)$; M is the mass of the reactive sample, λ is the thermal conductivity of sample and g is a constant dependent on the furnace and sample-holder geometry. The constants, λ and g, were obtained making use of the thermal reactions of the known compounds, i.e., BaCO_3 , SrCO_3 , Na_2MnO_4 and Na_2SO_4 .

References

- 1) S. Yajima, K. Okamura, and T. Shishido, Chem. Lett., 7, 741(1973).
- 2) S. Yajima, K. Okamura, and T. Shishido, Chem. Lett., 12, 1327(1973).
- 3) S. Yajima, K. Okamura, and T. Shishido, Chem. Lett., 3, 221(1974)
- 4) S. Speil, L. H. Berkelkamer, J. Pask, and B. Davices, U. S. Bureau of Mines, Technical Paper, 664(1945).
- 5) P. F. Kerr and J. L. Rulp, Am. Mineralogist, <u>33</u>, 387(1948).

(Received February 18, 1974)